Modulators of aMyloid protein aggregation and toxicity: egcg and clr01
نویسندگان
چکیده
Abnormal protein folding and self-assembly causes over 30 cureless human diseases for which no diseasemodifying therapies are available. The common side to all these diseases is formation of aberrant toxic protein oligomers and amyloid fibrils. Both types of assemblies are drug targets, yet each presents major challenges to drug design, discovery, and development. In this review, we focus on two small molecules that inhibit formation of toxic amyloid protein assemblies – the green-tea derivative (–)-epigallocatechin-3-gallate (EGCG), which was identified through a combination of epidemiologic data and a compound library screen, and the molecular tweezer CLR01, whose inhibitory activity was discovered in our group based on rational reasoning, and subsequently confirmed experimentally. Both compounds act in a manner that is not specific to one particular protein and thus are useful against a multitude of amyloidogenic proteins, yet they act via distinct putative mechanisms. CLR01 disrupts protein aggregation through specific binding to lysine residues, whereas the mechanisms underlying the activity of EGCG are only recently beginning to unveil. We discuss current in vitro and, where available, in vivo literature related to EGCG and CLR01’s effects on amyloid β-protein, α-synuclein, transthyretin, islet amyloid polypeptide, and calcitonin. We also describe the toxicity, pharmacokinetics, and mechanism of action of each compound.
منابع مشابه
Comparison of three amyloid assembly inhibitors: the sugar scyllo-inositol, the polyphenol epigallocatechin gallate, and the molecular tweezer CLR01.
Many compounds have been tested as inhibitors or modulators of amyloid β-protein (Aβ) assembly in hope that they would lead to effective, disease-modifying therapy for Alzheimer's disease (AD). These compounds typically were either designed to break apart β-sheets or selected empirically. Two such compounds, the natural inositol derivative scyllo-inositol and the green-tea-derived flavonoid epi...
متن کاملToxicity inhibitors protect lipid membranes from disruption by Aβ42.
Although the precise molecular factors linking amyloid β-protein (Aβ) to Alzheimer's disease (AD) have not been deciphered, interaction of Aβ with cellular membranes has an important role in the disease. However, most therapeutic strategies targeting Aβ have focused on interfering with Aβ self-assembly rather than with its membrane interactions. Here, we studied the impact of three toxicity inh...
متن کاملThe Lys-Specific Molecular Tweezer, CLR01, Modulates Aggregation of the Mutant p53 DNA Binding Domain and Inhibits Its Toxicity.
The tumor suppressor p53 plays a unique role as a central hub of numerous cell proliferation and apoptotic pathways, and its malfunction due to mutations is a major cause of various malignancies. Therefore, it serves as an attractive target for developing novel anticancer therapeutics. Because of its intrinsically unstable DNA binding domain, p53 unfolds rapidly at physiological temperature. Ce...
متن کاملLysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins.
Amyloidoses are diseases characterized by abnormal protein folding and self-assembly, for which no cure is available. Inhibition or modulation of abnormal protein self-assembly, therefore, is an attractive strategy for prevention and treatment of amyloidoses. We examined Lys-specific molecular tweezers and discovered a lead compound termed CLR01, which is capable of inhibiting the aggregation a...
متن کاملProtection of primary neurons and mouse brain from Alzheimer's pathology by molecular tweezers.
Alzheimer's disease is a devastating cureless neurodegenerative disorder affecting >35 million people worldwide. The disease is caused by toxic oligomers and aggregates of amyloid β protein and the microtubule-associated protein tau. Recently, the Lys-specific molecular tweezer CLR01 has been shown to inhibit aggregation and toxicity of multiple amyloidogenic proteins, including amyloid β prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013